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IINTRODUCTION

Classical aerodynamics is based on regarding the flow past a streamlined

body at a small angle of incidence as inviscid and irrotational outside a thin

region which comprises the boundary layer, surrounding the body, and the wake,L• extending downstream of it. The fluid in the boundary layer and wake is charac-
terised by its acquisition of rotation through the action of viscous forces and,

at high Reynolds numbers, by its turbulence. In calculating a first approxima-

tion to the external flow, displacement effects of the boundary layer and wake

* are neglected, while the net rotation in the wake of a lifting surface is repre-

sented by a planar vortex sheet whose strength is determined by the Kutta-

Joukowski condition of finite velocity at the trailing edge.

When the angle of incidence is no longer-small, the boundary layer may

leave the surface of the body well upstream of the Lrailing edge. This is known

as 'separation', although the process is not essentially different from the

departure of the boundary layer from the trailing edge in the classical aero-

dynamic model. In the separated flow which results from boundary layer separa-

tion, rotation is present not only in the boundary layer and wake downstream of

the body but also in the external flow which surrounds it. Modelling such flows

presents difficulties of two kinds: practical, computational difficulties of

representing the rotation, and conceptual, physical difficulties of accounting

for its origin. In general, these difficulties are compounded by a degree of

flow unsteadiness very much greater than that of a turbulent boundary layer

upstream of separation. This unsteadiness leads the aircraft designer to avoid

such flows as far as possible, so there is some justification for their neglect

by the aircraft aerodynamicist. However, if a separation line is highly swept,

the sepairated flow associated with it is frequently steady, particularly when the

position of the separation line is fixed by a salient edga on the body. The

prime example is the flow over slender wings at inLidence, with the formation of

coiled vortex sheets. Such a flow is eminently applicable.

Considerable success has been achieved in modelling flows with highly-swept
separation lines along salient edges by a straightforward extension of the

classical aerodynamic model. The rotation is still represented by a vortex

sheet, the displacement effects of the separated flow are ignored, and a Kutta

condition is applied at the salient edge; on the other hand, the location and

form of the vortex sheet can no longer be assumed a priori. Most work so far his

made use of the framework of slender-body theory to reduce the computational

complexity, but it has recently been demonstrated1 that the approach can be
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carried through more generally, in particular for fully three-dimensional

incompressible flow.

Highly-swept separation lines also arise on smoothly curved bodies, for

instance on the noses of aircraft at high incidence, on guided weapons and on

up-swept rear fuselages of aircraft. Parts of the leading edges of Concorde areV appreciably rounded and the leading edge of the US Space Shuttle is well rounded.

Elsewhere on slender wings highly-swept separation lines are found on the upper

surface beneath the primary vortices and may arise on the shoulder of a deflected
S~leading-edge flap.

L It is therefore of considerable interest to attempt to extend the coiled

vortex-sheet model of separation from a salient edge to model steady separation

from a smooth surface. If separation originates at a pointed apex, as for

instance on an ogival nose at high incidence, the separated flow can be repre-

sented by a coiled vortex sheet which takes a conical form at the apex; but if

the most upstream point at which the flow separates is an ordinary point on the

surface, as on an ogival nose at lower incidence, its initial form is not clear.

Apart from this initial problem, we may expect, based on experience in calculat-

ing flows with salient edges, that the boundary conditions on the vortex sheet

(that it is a stream surface with no discontinuity of pressure across it) will

define the sheet com.letely once the separation line from which it springs has

been specified. (There may be more than one solution fc,: a given body, onset

flow and separation line, as found in Ref 2, but each is well-defined by the

conditions.) The position of the separation line must be supplied to the

inviscid model; it might be obtained from experiment or through an iteration

between the calculation of the inviscid flow and the calculation of the boundary

layer on the body upstream of separation. The background to these introductory

remarks is given at greater length in a recent review3 .

It is in the immediate neighbourhood of the separation line itself that

the main differences in behaviour are likely to arise between separation from a
salient edge and separation from a smooth surface. The present analytical study
was undertaken in order to shed some light on this behaviour and to provide a

guide for choosing appropriate local representations in subsequent numerical

work. The results obtained define the possible types of behaviour of the vortex

sheet close to the separation line and, through the associated pressure fields,

raise questions concerning the eventual matching of the inviscid model to a

boundary layer calculation.
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In section 2 it is shown, with some minor assumptions, that the vortex

sheet leaves the surface tangentially, ie that at almost all points of the

separation line the tangent plane to the sheet is also a tangent plane to the
body. The argument is elementary, but is is set down to provide a basis for

what follows and to make explicit the assumptions involved.

For the rest of the study, the asdumptions of slender-body theory are made.
This provides a manageable analytic frmnework and is likely to be appropriate in

most situations involving highly-swept separation lines. The method of analysis

employed is described in section 3 and applied in detail in section 4 to the

L problem of a conical vortex sheet leaving a semi-infinite plane wall. It is

shown that, if the distance of the sheet from the wall increases like yn

where y is the distance along the wall away from the separation line, then the

only values of n not exceeding 3 for which the vortex sheet boundary conditions

can be satisfied are 3/2 and 5/2. The former is associated with an adverse pres-

sure gradient upstream of the separation line which becomes infinitely large as

the line is approached. For n - 5/2 the pressure gradient is not dominated by

the local flow behaviour. In section 5 it is shown that the restriction to

conical flow can be removed without altering the conclusions and in section 6 it

is shown that the results also hold for a vortex sheet leaving a smoothly curved

body. Section 7 includes a brief discussion of the results as they relate to

modelling separated flow, both steady flow in three dimensions and time-

dependent plane flow.

2 THE VORTEX SHEET LEAVES THE BODY TANGENTIALLY

In this section it is shown that, if vorticity is being shed from an

ordinary point of a separation line on a smooth body into a vortex sheet which

Semhodded in e steady, irrotational homentropic flow, then the vortex sheet is

tangential to the body at that point.

By an 'ordinary point' is meant a point at which the separation line has a

single, continuously varying, tangent; and by a 'smooth body' is meant a body

which, on the separation line, has a single, continuously varying, tangent plane.

The assumption of steady flow is primarily for simplicity. 'Homentropic' means

that the entropy is the same throughout the flow field. The assumption of homen-

tropic, irrotational flow excludes the study of vortex sheets in flows with

strorg shock waves, and of vortex sheets bounding closed bubbles of fluid which

are not penetrated by fluid from the free stream. These assumptions are likely

Lo be valid for separation from a highly-swept separation line on a stationary

body producing small disturbances in a uniform stream, but it is not necessary
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to assume that disturbances are small or that the separation line is highly
' swept.[ I' As a consequence of the assumption of irrotationality and the elimination

of closed bubbles, the circulation of the vortex sheet can be defined. The

+ "circulation along a path which begins at a point on one side of the vortex sheetI',• and ends at the adjacent point on the opposite side of the sheet, lying otherwise

in the irrotational fluid, depends only on the choice of point on the sheet. If

the point lies on the separation line at the base of the sheet, the circulation

along such a path is defined (with some sign convention) as the circulation of

the sheet at that position on the separation line. The notion of the shedding of

vorticity can now be made more precise. It is taken that vorticity is being shed

from a point on the separation line if and only if ýhe circulation is varying

with position on the separation line at this point and the point is not a stagna-

, tion point of the mean (or convective) flow. An example in which vorticity is

not being shed is provided by the inviscid model of the flow pact a combination

of a lifting wing and a cylindrical fuselage: the plane vortex sheet representing

the wake from the wing lies along the body side without being fed from the body.

The present results do not relate to such a situation.

Following this explanation, the proof is very simple. We assume first that

the sheet is not tangential to the body and show that vorticity is not being shed.

4- Since the body and the separation line are continuously curved, there are

unique normals to the body and to the vortex sheet at the point considered.

These normals are distinct, since we assumed the sheet is not tangential to the
body, and the component of the fluid velocity along each vanishes, since both the
sheet and the body are stream surfaces of a steady flow. Hence the fluid

velocity on both sides of the sheet is perpendicular to both normals, ie it is

parallel to the tangent to the separation line.

The second boundary condition on the sheet is that the pressure is contin- a

uous across it. For steady, homentropic, irrotational flow, equality if pressure

implies equality of fluid speed (neglecting body forces), so the fluid velocity J
on the two sides of the separation line is either (a) zero, (b) equal in magni-

tude and opposite in direction, or (c) non-zero and identical. Possibilities
(a) and (b) both correspond to zero mean velocity, ie to a stagnation point of
the mean flow, so that vorticity is not being shed. This leaves possibility (c),

according to which the fluid velocity is the same on both sides of the separation

line. Hence the fluid particles which at one instant lie on a path which

surrounds the vortex sheet, beginning and ending at adjacent points on opposite

-- - -.- - --
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sides of the separation line, at the next instant also lie on a path which

surrounds the sheet and terminates at adjacent points a short distance downstream

along the separation line. However, the circulation along such a path does not1< change with time, so the circulation of the vortex sheet is not varying with
position along the separation line, and so vorticity is not being shed.

This shows that vorticity is not being shed if the sheet is not tangential

to the body. On the other hand we can see that vorticity can be shed if the

sheet is tangential to the body. It is convenient to distinguish between the two

sides of the separation line, and consequently of the vortex sheet, referring to

the side on which the sheet lies close to the surface as the downstream side.

Then on the downstream side the velocity vector must again lie parallel to the

separation line, but on the opposite, upstream, side the only restriction

imposed on the direction of the velocity is that it must be parallel to the

comnon tangent plane of the sheet and the body. The magnitudes of the velocity

vectors must again he equal, but this allows there to be both a non-zero com-

ponent of the mean velocity normal to the separation line and a non-zero com-

ponent of the vorticity parallel to the separation line. Vorticity can therefore

be shed and the circulation of the sheet can vary along the separation line.

A sketch of the configuration envisaged is shown in Fig 1. The portions

of body surface and vortex sheet lying between two parallel cross-flow planes

are represented, with the vortex sheet touching the body along the separation

line. Streamlines of the inviscid flow on the wall and on the sheet are shown

by solid lines. On the downstream side of the separation line, these are all

nearly parallel to the separation line, whether they lie on the wall or on the

vortex sheet. On the upstream side, the inviscid streamlines on the wall cross

the separation line at an angle and continue on the vortex sheet. The skin-

frictirn lines, or limiting streamlines of the viscous flow, are shown on the

wall upstream of the separation line as broken lines. These deviate inwards

from the curved inviscid streamlines, approach the separation line, but do not

cross it. On the downstream side, a nearly parallel flow is envisaged in which

the skin-friction lines on the wall are essentially parallel to the inviscid

streamlines. The direction of the skin friction thus varies continuously on the

wall and the velocity varies continuously on each side of the sheet. The

boundary layer on the downstream side is r.ot obliged to separate in this concept

of the flow, for which support is provided in subsection 4.4.

7 __
LaVMW



3 A BASIS FOR FURTHER ANALYSIS

The previous section showed that, under fairly general assumptions. (steady
flow, an 'open' type of separation and an absence of strong shock waves) a vortex

sheet into which vorticity is being shed from a smooth body is tangential to the
body surface along the separation line. To find out more about the form of the

vortex sheet and the flow field near the separation line a more complete analytic
framework is needed. Since, as indicated in the Introduction, flows with highly-
swept separation lines are of considerable interest, it is nstural to choose the

framework of slender-body theory. This means we are concerned with a body of

slowly varying cross-section, whose lateral dimensions are small compared with
its length, with its longitudinal axis at a small inclination to a uniform stream

K whose Mach number is not large compared with unity. On such bodies extensive

flow separations of open type (is which are penetrated by upstream fluid) are
observed, for which a vortex-sheet model is likely to be appropriate. It is to

such a model that the results obtained will apply.

According to slender-body theory, Lhe flow is described by a disturbance
velocity potential which is the sum of two terms. The first is a function of the

streamwise coordinate only, with a form which depends on the Mach number cf the

free stream. This function only gives rise to a disturbance velocity in the
streamwise direction, and this velocity is uniform in each cross-flow plane, so

it emerges that it plays no part in the present analysis. The second term is a
harmonic funct~ion (a solution of Laplace's equation) in the cross flow plane,

and is therefore obtainable as the real part of a complex analytic function of

the complex coordinate in this plane. For a wholly attached flow, which is
completely irrotational, this function is determined (to within an additive

constant) in each cross-flow plane by Lhe boundary conditions on the body surface

and at infinity. When vortex sheets are present further conditions are required.
For instancs, in a linearized approach, where the vortex sheet lies in a fixed

position and represents the wake shed from the trailing edge of a wing, a
condition of pressure continuity is used to determine its strength. For problems
of separated flow, where the position as well as the strength of the vortex I
sheet is to be found, the two boundary conditions that the sheet is a stream
surface and rhat the pressure is coutinuous across it are required. These

conditions can be written as differential equations which express the variation

of the position and strength of the vortex sheet in the streamwise direction in
terms of the velocity field in the cross-flow plane (see, for example, the

Appendix or Refs 4 and 5). For a sharp-edged body, for which the separation line

is known, these equations can be integrated to trace the downstream development

21w_ ý
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* .1 of a vortex sheet specified at some station upstream . It is to be expected that

the same will be true for a smooth body, once the separation line is specified;

leaving the specification of the separation line and the establishutnt of an

initial vortex configuration upstream as the outstanding problem.

• These problems do not enter the present analysis, since no attempt in made

to determine the entire vortex sheet configuration. The more limited aim of

further restricting the possible behaviour of a vortex sheet near a separation
S ,line can be achieved by arguments in a single cross-_17ow plans, like those used

by Claworthy and Mangler6 to discuss the vortex shc c leaving a salient edge in

a conical flow. Suppose that we assume a shape for the section of the sheet by

a cross-flow plane and also specify the variation with the streamwise coordinate,

x , of that shape in the immediate neighbourhood of the cross-flow plane. Than

the component of the velocity, in the cross-flow plane, which is normal to the

curves in which the body and sheet intersect the plane im known (by

equation (A-4), for instance) and so is the behaviour of the flow at infinityI in this plane. Hence the entire flow in this plane is determined. It is helpful

to set out one way of finding it explicitly.

Let us imagine that the entire region of the cross-flow plane, Z - y + iz ,

exterior to the body and the vortex sheet (or sheets) is mapped conformally on to

the upper half of a transformed plane, Z* , with the point at infinity in the

Z*-plane corresponding to the point at infinity in the Z-plane by an analytic

function

Z F(Z*)

In this mapping the surface of the body and both surfaces of the sheet(s) become

part of the real axis in the Z*-plane. We now construct the flow field in this

transformed plane. A source distribution is introduced along the real axis

whose strength per unit length is proportional to the product of the normal

velocity in the cross-flow plane and the modulus of the mapping:

q(y*) - n 2v (Z)IF,(y*)I ,___)

where Z is the point on the configuration corresponding to the point Z* y*

real, ie Z- F(y*) . Then the complex potential is given by

EZ + q(y*) in (Z* - y*)dy*

2w j (2)Li 21r
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where V is the speed of the flow at infinity in the Z*-plane. The component of

velocity, in the cross-flow plane, which is tangential to the curves in which the

body and sheet intersect the plane is then given by

; vt (Zo) - v(y6)/IF'(y8)I , (3)

I where Z F(y*), y3 real, and where v* , the corresponding velocity component

in the transformed plane, is given by the derivative of (2):

- + q(y*)dy*

The integral in (4) is to be interpreted as a Cauchy principal value. From the

values of vt at points on the sheet, the right-hand side of equation (A-10),
Ft

Av cos 3+ +P -s, (A-10)
7xtax I

expressing the condition of pressure continuity, can be found. So, too, can

At . If this determination can be carried through in terms of parameters whose

variation with the streamwise coordinate, x , is known, the differentiation

on the left of (A-10) can be performed and the consistency of the assumed shape

of the sheet with the pressure condition can be checked.
This procedure is not a practical way to investigate the global solution,

but it can be applied to obtain local information at points of the flow field

at which the velocity is singular. To make this idea more precise , we recall

thLt a complex function of a complex variable is regular at a point if, and only

if, it can be expanded in a power series about that point, the power series hav-

ing a non-zero radius of convergence. If a function is not regular at a point,

it is singular there. The same definition can be applied to real functions of a

real variable, with the power series being convergent in a non-vanishing interval

centred on the point. (Note that a function which is singular in this sense may

be bounded, like the Heaviside step function, and even differentiable, like
2exp (- I/x2) , both at x = 0 .) There is clearly a sense in which a singular

function is unchanged when a regular function is added to it; we shall say that

its singular behaviour is unchanged. On a more formal level we could define

equivalence classes of functions, assigning functions to the same class if they

differ by a regula: function; but this refinement is not necessary. Note that

LL---------- •w.'•



the singular behaviour of in sin x and in x at x - 0 is the same, but that
2

of 2 in x is different; nor is the singular behaviour of (in sin x) the sameI .2as that of (in x)

We can now prove a theorem which is fundamental to the analysis which

follows, viz: If v* is given by (4), then its singular behaviour at a point

P is uniquely determined by the singular behaviour of q (or v*) at P

The proof follows.

We choose the origin at P and simplify the notation, writing (4) as

v(~ - Vn. dn (4')

We wish to prove that, if ql(n) and q 2(n) have the same singular behaviour

at n - 0 and v (E) and v2 ( ) are related to them by (4'), then v and

v2 have the same singular behaviour at F - 0 . Let q(n) - ql(n) - q 2 (n) and

v(O - V (V - v 2 Q) . Since (4') is linear, q and v are also related by it.

Then, by the definition above of singular behaviour, we must prove that the

regularity of q at n - 0 implies the regularity of v at • - 0 . If q
A

is regular at the origin we can write, for some e > 0

q(n) ,a nn

n-O

for hi •

Now suppose e< and rewrite (4') as

2nv(C) , 2wV + f (n)dn + fq(r)dn + a IC - n 1 -n ann

e~ n~

where In - ndn

F-C

rn ,n-I n-IWriting - - , we see that

I n &In- 1 - 2cn/n for n > I

while +0 g ln . :

I l

058
L--.5
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Hence I in + a polynomial in • , and so I can be expanded as an n
power series in E for Itl < c . In the integrals over infinite intervals in

the expression for 27v(&) , we can expand (& - r) as a power series, for

{< C i , giving

______n g(n)dn[, £ n=O £

"and a similar expression. Hence v(C) is regular at & - 0 and the proof is

complete.

The significance of this theorem is that singular behaviour is likely to

arise on the two sides of the separation line. This may co~z from the shape of

the cross-section of the body and sheet, through the mapping function F iJ
(I) and (3), or from the strea ise rate of change of the cross-section, through

the normal velocity v in (1). Moreover, the behaviour of q or v* is

locally determined, through (1). Hence the theorem tells us that the singular
behaviour of v* on the two sides of the separation line is locally determined.

t
This can be used to provide information on the local behaviour of vt , through

(3), and the consistency of this behaviour with equation (A-10) can be checked.

This provides the main result, that a number of plausible forms for the vortex

sheet must be rejected.

The last preliminary question to be discussed before embarking on the

analysis concerns the mapping function, F(Z*) . The argument above only

involves properties of F in the neighbourhoods of the two sides of the separa-

tion line. It is therefore sufficient to construct a function which maps the
I region outside the body and a truncated vortex sheet on to the upper half of the

Z* plane, provided that, near the separation line, the truncated sheet has the
local behaviour which is to be investigated.

The next section begins with the construction of an appropriate mapping.

The argument is then carried through for a conical sheet on a plane wall, a case

which brings out the essential features without unnecessary complications. In

sections 5 and 6 the limitations to conical flow and plane walls are removed.

The reader who is prepared to take the details on trust may proceed to section 7.

4 THE CONICAL SHEET ON A PLANE WALL

4.1 The sheet shape and mapping function

i IIn this section and the next, the body shape considered is a plane wall

which extends laterally to infiuity and is p a leI to the u i :stUrbed f-.ow Tt
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does not, of itself, disturb this flow, so slender body theory is applicable,

provided the vortex sheet is slender. Only highly-swept separation lines are

considered and it is asstmed that a vortex sheet springing from a highly-swept

separation line is slender.

The shape of the sheet is described in a cross-flow plane which is normal

to the separation line. In this section, the sheet is assumed to be conical,

ie to be generated by straight lines through an apex, so that its entire shape

is defined by its section by the cross-flow plane, together with the distance

of that plane from the apex. In this case it is convenient to'choose the origin,

0 , of the right-handed rectangular Cartesian system of coordinates at the apex,

with Ox downstream along the separation line, 0y2 to starboard and Oz normal to

the plane wall and into the fluid, as sketched in Fig 2. We suppose Y2 <0 is

the upstream side of the separation line on the wall, z2 - 0 . Then, near the

separation line, ie for small values of Y2 and z2 , the section of the sheet

by the cross-flow plane x - const is given by

n

z2 Y n > I.(5)

In this Report the tilde is used to indicate asymptotic equality, is

a(t)
a(t) - b(t) -'.f and only if lim -M- ,

t~0

The appropriate variable, t , and limiting value, to is usually obvious from

the context. When an indication of difference between the left and right hand

sides is desired, th- 0 notation is used:

a(t) - b(t) + 0(f(t))

if and only if there exist A and c such that

ja(t) - b(t)I < Ajf(t)I for It -tol < c .

As explained in the previous section, it is sufficient to replace the sheet by

any arc which has the same behaviour near the separation line. We obtain an arc

in the plane of Z y2 + is2 with the behaviour (5) by taking a circular arc

in a plane Z, related to Z2 by

3 2

L il .L. , ...... •...T -- , ,.,,•• ••o'..-. • - ... •• . • :'
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- m m , (6)

where a is the diameter of the circular arc. To obtain the required plane

wall in the Z2  plane, we introduce a wall with a corner at the origin in the

r. Z3  plane, as shown in Fig 3. In the Z3  plane, the fluid occupies the sector

3 30 3 W; /m ,

where Z3- r 3 eie3

m must be at least • if the Z3  plane is not to be covered twice, a complica-
tion we choose to avoid. The half-lines 83 - 0 and 83 - I/m represent the

wall, and the vortex sheet is represented by a circular arc of radius a/2 ,

touching the wall 83 e 0 at the origin. A general point, P , on the sheet is

given by 1

r - a sin9 3  , 0.B3 ' C (7)

where the suffix C denotes the value of 6 at zbe end of the arc. Suffixes

u and d denote the upstream and downstream sides of the sheet at P . A is I
the point at infinity, B and D represent the upstream and downstream sides of A

the separation line. J

Corresponding points are denoted by the same letters in the Z2  plane.

Under (6) the sector becomes the upper half-plane 0 02 .4 V , where

Z - r 2 ei02 . The wall is the real axis and the equation of the vortex sheet is,
by (6) and (7)

go- a an e a- assn . (8)

For small values of 02 , (8) yields

Y2 r2Q)

- cos oB ~~
-a aco 2

m+1 (1+m)/m
z2 r 2  82n ( )

a a sn0 2  ~)m 7

-I



The required behaviour (5), is therefore obtained withJ
and a (9)

n-

Thus the order of contact increases as m falls. The curvature of the sheet at

the separation line is zero for m < I, n > 2 ; finite for m -I, 1n - 2 ; and

infinite for m > 1, 1 < n < 2 .

The region occupied by the fluid in the Z3  plane is bounded by straight

lines and circular arcs, all with a common point. It can therefore be mapped

on to a region bounded by straight lines by an inversion which carries the common
point to infinity:

a2

z a2  (10)

The configuration in the Z4 plane is shown in Fig 4. The half-lines BA and DA

remain half-lines, though the origin is interchanged with the point at infinity.

The circular arc becomes a third half-line, parallel to the real axis, since the

arc touches the real axis at the origin. If Z3  lies on the sheet,•3eie3
Z- a sin 6 ei , by (7), and

Z4 a(cot 3 -i)

by (10). A convenient relation is obtained from (6) and (10):

-- = .(11)
a a

Since the region occupied by the fluid in the Z4  plane is bounded by

straight lines, it can be mapped on to the upper half of the Z5  plane by a

Schwarz-Christoffel transformation. If A maps into the point at infinity and

B, C and D into Z5 b, c and d ,where b < c < d ,as in Fig 4, we find the

mapping function is defined by

dZ4  1 ZS - c ( a (I)/m
Z M - (12)•, dZ-- m Z5 Z 5

where a disposable constant has been chosen so that Z2  Z5  at infinity. The

rules for constructing (12) are given in standard texts which deal with conformal

mapping.

1058
I_____
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It is not easy to integrate (12) for general values of a . Fortunately,

it is sufficient for our purpose to consider the behaviour of the transformation

near B and near D. Let us first consider the neighbourhood of B and write:

- b +aC C ~small.(3

Introducing this into (12), we have

(I~~. k C k 2 (14)
dC m 2( 31 .. 32)3

where the omitted terms are regular and O(C) and

k~ c k - aand k
" d - b ' 2 (- b d -bk3 (c - b)(d - b) 2

.... (14a)

In integrating (14), it is necessary to consider separately the cases

Mr-A , j < m ! rn-I and M > .

(a) a- A . Equation (141 oecomes

Banco, by equation (11 ),

z 2 ( 32 2•, .i
-- - ( I + k2 C-kC In C +AC + O(3 In C), (15).

~i I

where A is a complex constant, so far arbitrary. Now, on BA, C is real and

negative, so In C - In I•I + iw , while Z2 must be real. Hence the imaginary

pairt of A must cancel the imaginary part of the preceding term in (15):

X'Z7 17~
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A ,k 3 A+iw) , (16)
Si3ir

where A is an arbitrary real constant. Also, on BC, { is real and positive,
r

so, by (15) and (16)
•:•. s2 {z wkkl
•-- 7 f 2 , ¢33

aa

and

Pa a

i~iIr t Comparing these expressions with (5) and (9), we see we need

2wkk - I or 2wa (d - c) (d -b) 3  (17)

(b) a < c I Equation (14) becomes

""Z•4  S2 (ak k)/m))4 1 (-1- 2/m l-T

•~ 2• , , + AC,/. + 0(C2))
therefore Z4 7 2 -

i Z2(l k2¢ dtI/m 0(2))

therefore a ( IrI -M C + O((18)

Again, on BA we require Z2  real, with C - IHe • Hence

A - ~~" .(19)

Also* for C real and positive. corresponding to BC, we require

- -a

~ and so
-a -akYJfAI

Hence, by (19)-

"A (cot i)/k,

mI

•" Alo. fr € ral ad postive coresponlu2Yo BCve rquir
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and, by (18)

a 2 4"2 *cot ; iCI/,k1  O(C ))j20
ka

(c) m- I . Equation (14) become

dZ4I+2+ (

4 2•...eo•. zA- • (, k2,1nc-A,.0o,2))

where A is an arbitrary complex constant. Hence, by (11),

"" k C In C + AC ÷ In C (21)

As in (a) above, C real and negative corresponds to Z2 real and so

A - k(A + iw) , (22)2 r

where Ar is-real.

Also, for 4 real and positive,

2Z wk2  I22
a- 77 -wikl k 7)

and so, by comparison with (9):

wkIk 2 2 1 or wa(d-c) c (d -b) 2  . (23)

(d) m > I • The expression for Z in (b) above becomes

4akz i 4 (1 + ÷C/ ()>,71m-
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'2 I 1 mc/m 2/m)therefore .- ( + 0(-1r•

a k m ( 2/ )
I

The same arguments as in (b) lead to the same value of A , so that

z1

z2_ 'o' C I /M +. (24)
a kmkkII

We have now, in equations (13) to (24), expressions describing the behaviour of

the mapping near B , for all relevant values of m .

Near D the form of the expression does not depend on m . Let

Z5 - d +a , w small. (25)

Then, by equation (12)

d- - -mw

where a is real.

Therefore - a(- )- w n+ + a ÷Wn (26)Threor 4 " d---b• ) E n-

n-l

Now, for w real and positive, corresponding to DA, Z4 is real, so A is

real. Let B - eA , so now B is an arbitrary positive constant. For w real

and negative, corresponding to DC, A - -a , and so

a (m+)/m d - c

Hence (26) becomes

Z4 -n B + 0
4 71- B
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K~T4 end, by 0si)

2 - (=nB ( (I 0( _ _wB')) (28)

4.2 Local behaviour of velocity field

The first step along the line of approach described in section 3 is to

obtain the normal velocity on the sheet in the crose-flow plane, Z2 . In the
Appendix$ the boundary condition that the sheet is a stream surface is used to

provide expressions for this normal velocity component. There, as here. the
i cross-flow plane is normal to the axis of x , which is inclined at a small angle

to the undisturbed stream. If the sheet is conical, with apex at the origin,
requation (A-5) becomes (see Fig 3 for notaticn) g

•v

" x--rsin ,

where the sense of the normal is given by a positive rotation of w/2 from the

direction of e increasing along the curve, ie into the fluid on BC and into
the sheet on DC. Note that ro 6, * and vn all refer to the Z2-plane, but

suffixes are omitted for simplicity. Equation (8) relates r to B :

r a sinU(m.)

If a is the arc length along the sheet in the Z2 -plane, measured from the
separation line,

a%2 + -d 22 (d~r s 2(n

and sin * - rdO/da , so the boundary condition becomes

vn - a sin ' A a(S,)( +1 0Q(a2 (29)

To proceed to the next step, finding the normal velocity v* (or the

source strength q) in the Z.-plane, through equation (1), we need the modulus

of the mapping at points on the sheet. By (11) and (12)
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dZ d?, dZz (ms+l/M

,,2 4 AdZ/ "Z2  d 5  2 b (30)

' We used the local behaviour of the modulus of this on the real axis near F and D,

i. for and w small and real. Since, on the shoet, do/dZ5 - IdZ2/ ldZ ,
it is convenient to relate a to C and w at the same time. As in the

Sprevi~ous sub-section, we deal first with the uighbourhood of B, for the differ-

ent values of ms. By (13) and (30)

dZ2 -b at tZ_U+ 5 d-" -b- aC 7,4• (31)

(a) a I j • Introducing (15) into (31), and taking the modulus for C real,

we find

r dZ2 2
2k2  - In (1 + o(2) 32)

Integrating (32) for C > 0 lives

a i ( 2 3C2 2)) C (33)

(b) < a < I Introducing (20) into (31) and taking the modulus for C real

and positive, we have:

+ + -Id + 2 ;-mk (2 3+

Z 21 _. 2d s 1 - +I m •/l + O

Integrating (34) for C > 0 gives

k!k - !.cot C. I1/mi + O(C2) . (35)

(c) a- 1 . Introducing (21) into (31) and taking the modulus for C real,

we find:

058
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dZ5  (36)

Integrating (36) for C > 0 SLves

(Id l 2C In C 0) . (37)

(d) m > I introducing (24) into (31) and taking the modulus for C real

and positive, we have:

I 2 1  ( I M + Icot 1 I + O(C.,2/) (38)

integrating (38) for C > 0 gives 1
VI

a icot O( 2/m39)k1

The form of the leading terms in (32) to (39) is independent of m , but the

higher order terms differ significantly.

For the neighbourhood of D, introducing (25) into (30) gives
dZ2 c d - o 2)

UZ aw) b -aw0

By (27) and (28) this reduces to

dZ2 / •

-dZ -ww T-Bs (I ÷ 0(w)) . (40)

On the sheet near D, w is real and negative, so that

i n Bw - in WI - -v( - ia)18 , (41)

where ( 4m - 2)In BlIl(W2

is a convenient small positive quantity. The modulus of (40) becomes

I .12 1(1 ÷ 82) (I +)/2 (I + o(W)) for w • 0 (43)

and
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dz 2 1 m8m+ 1 (I - ( + o(W)) for w 0. (44)

Note that, by (42), w is exponentially small in relation to 8 Also by (42)6

d6/dw 82/ww and so, for ( < 0 b

do d Z d am8m"Z + 0.

W, dwV d8 Z (=+I)/2 ~+()

and

SO = a 4-(1 0(62)) (45)

We can now find the component v* of the velocity normal to the real axis
n

in the Z.-plane, close to B and D. By (I) and (29) we have, on BC and DC,

v*(m+1)/m~ dZ2-0 " i (~I + 0' (46)
I51I

with the normal into the fluid on BC and out of it on DC. On BA and DA, which

correspond to the body, (A-5) and (1) show that v* - n - 0 . Introducing into
Sn a

(46) the leading term from (32) to (39), (43) and (45), we find for the

velocity component w* normal to the real axis and into the fluid in the

Z*-plane:

onM AA W* v 0
n

• aO ¢ ~(m+ 1) /Mr m

1 (47)

'mikU •2m+2 82,SonEC "• - v1* - -•:~ ; (~1 + O( ) ln~)

on DC wk 7x&U 6 ( 2 +2 0

on DA - v* 0 2

We now wish to find the tangential velocity, v* , on the real axis in the

Z.-plane near B and D. The combination v* - iw* is an analytic function of

Z . If (v* -w*) has the singular behaviour of v* - iw* at B or D, then
5 S

we can write

v*-i* - (v* w*) s + (v*- iw*)R , (48)

L. ,A - •:7-
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where the second term is regular. This term is not determined by local arguments

and we writ'• it as

(v* - iw*)R - Z Ann (near B) or Z Bw~ (near D) . (49)

nuO n-0

The conditions (47) on BA and DA imply that An and Bn are real. The singular

behaviour cf v - iw at B and D is determined by . singular behaviour of w* ,

by the theorem proved in section 3. We therefore proceed by constructing analy-

tic fuuctione whose imaginary parts behave like w* near B and D. As before,

we start with B for the fAiliar four cases.

(a) m - . By (47), for C real,

0 for > 0

aur3aU for > 0•

Consider the function f(O) = 3 (in -in r) . For real and 21, ative,

" 0
and for • real and positive,

- 3

Hence

aU3
(v*-iW)s 7rx 2

k1

(b) < ' m < I . By (47), for • real

0 for C < 0

- for > 0
H 2m;, k1
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, - where 2 < = (m + 1)/m < 3 For C = pe define C a

consider the function

Sf(O) = -e O/sin U - C (cot iw-i)

For C real and negative, 0 - v and J9 ft 0 . For • real and positive,

i =0 and if•f c- - , real. Hence

(M+I)/r
(v* ii*)s - (i-cot 1 , (51)

since cot Ujw cot w

(c) m= I . By (47), for C real

0 for t < 0

7 kfor > 0II
Proceeding as in (a) above, we find

aU n C

(v*-iw) ~ - 5 (ir-ln ) . (52)

II
(d) m > I . The argument in (b) applies, with I < u < 2 , leading again to

K. (51).

Now in the neighbourhood of D, (47) gives, for w real,

maU 2m+
"_--a (1 + 0(8)) for W < 0

w*

0 for w > 0

kk
Consider the function fk(w) - (- w/ln Ew)k/w . For w < 0 ,

! Iln BW WO -M./ i)6

by (41), and so

LII
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k -k
fk~~~w" - k,

and

Jfk~ k6 k+l (I+0(62))/w

XFor W>. ofJ . Hence

U (m+1irx ~2m+ 1 )2)

Equations (48) and (49), with the appropriate equation from (50) to (53) give

the complex conjugate velocity in the Z5 -plane near B and D.

We can now complete the calculation by using these expressions to find the

tangential velocity, vt , on the sheet in the Z2 -plane, using a form of

equation (3):

vt v 1 (54)

in which v* = v* on BC and vt -v* on DC. Again we treat first the four

cases which arise on BC, where i "s real and positive.

"(a) m- . By (32), (48), (49) and (50)

AO + A,; + A 2 _ aU C3 In C +
iTxk 1

vt v(I 1 + 2k 2  - 3k 3 C2 In + 0(C2))

ki(A f~ 3k 2 in C O(C)

where A; is another real constant. Inverting (33) to give

C ki (14 +0(a))JIa

and assuming for the moment that A0 * 0 , we can write, using (17),0!
vh i kA 0  + A"' •4y )i a + 0(a2) ,

where A7' is another undetermined real constant.

-Z,. . 777
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(b) I < m < I . By (34), (48), (49) and (51):

2 aU 1 (m+i)/m!.. i- • co t 1- + . .
'0 '-4 24 2m+1 m

- .vt . _ mk
2_ 2 4k 1 + M 1/m 2/)

co i + +- 0 ( o -m ÷
k I

k kIm(A 0 + A;C+ A +- mcot 1/ + o(C2)

Using the inverse of (35) and assuming A0 * 0 , we have

vt Wk A0 ( A (+ (l a +t +0(02)) c (56)

where A; and A" are again undetermined real constants.

(c) m - i . By (36), (48), (49) and k52) A
-au 2

A0 + A 1  -_713 in l; +
wxk

it_•..kU I -2k2 4in 4 + 0(4)

Using the inverse of (37) with (23), and still assuming A0 * 0 , we have:

Ii•vt k kA0 ( + l2o n a + 0 W)a" (57)

(d) m > I . Using (38), (48), (49) and (51) we obtain a result like (56):

vt + (I + m) coc- + 0(o . (58)1 0i~o m (a
It is significant that the dominant terms in vt arise in each case from the

regular behaviour of v , for which the real axis in the Z5 -plane is a stream-

line, ie the dominant terms in vt near B are of the same form as they would

be if the sheet were a streamline of the cross-flow.

We now considet Lhe behaviour of vt or DC, near D, where w is real and

negative. By (53) and (41)

.. %. I
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maUd2TA2
• (2m +-I): (I- 0(8))

By (48) and (49), vI does not contribute to v* to this order, and so, by

(43) and (54):

maua 2m62),Vt = - (2m + 1)7xr -- ( + 0(2))

We can write this, by (45), as

u _ __ _ (2/r)n!v " ( m + l x ( + 0 (U. (59)

In contrast to the situation near B, the dominant terms in vt near D arise

from the singular behaviour of v , so that they are uniquely determined by the

shape of the vortex sheet near D.

Raving determined vt near D, we can justify the assumption that AO is

non-zero. Equation (59) shows that vt vanishes at D, while (55), (56), (57)

and (58) show that v also Nanishes at B if A - 0 . In terms of the dis-

cussion in section 2, this would mean that no vorticity is being shed from the

separation line. In general this would mean that the point on the separation

line was exceptional, but for the conical flow postulated in this section it

would mean that no vorticity is being shed anywhere on the separation line.

Hence A0 0.

The convective velocity •(vtIB + VtID) at the separation line has the

same sign as A0 , so we conclude that A, > 0 if vorticity is being shed.

4.3 Consistency of velocity field with continuity of pressure

For a conical field, the condition that the pressure is continuous across

the vortex sheet, (A-I0),becomes

At AV Cs,-- (60)

since At. y and z are proportional to x , y - r cos e, z - r sin 0 and

S-• - 8 . We wish to consider whether this relatLion is consistent with the

tangential velocity components found in subsection 4.2 in the neighbourhood of

the separaLion liue. By bteps like those leading to (29), we find
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Sr cos a a sin0 COS - 0(0 + O(2/ 1) • (61)

Examining equations (55) to (58), we see that the tangential velocity on the

"sheet near B can be written as[ A (I + A110 (s + 1) )f(o) + o(0l1/f(a) (62)

JBC

where A' * A(c-b) m (d - b) m  0 and A.' are undetermined real constants;0 0

In a for mini or I

f (a) = (63)

cot for m >j and I;

and the notation o(g(o)) stands for terms of higher order than g(o) . On the
sheet near D, the tangential velocity is given by (59) as

4 V U 0o/ ( 4vtJDC = (2m +)x (I + 0 (a2/r) . (64)

All the terms in (60) can now be represented for small values of a . By

(61), (62) and (63):

xr coso •- V = r coo Y BC + vt )
m xA m 0/nf0))(5

= - + Cea + (m + 1)(k 7) f(o) + o(alf(oF) (65)

where C! is another arbitrary real constant. Similarly

t vtjB- vtIDC

A01 + C2o + (m + l) f(o) + o(ac f (a) (66)

where C is a constant related to C1 . Integrating (66) gives

A- r *! Avtda

0
{•(o C22 -- l°(m+l)/m))

= a + 1 + lu f (a) + o(a (ma )/mf(()) (67)

U(7
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j here r - " is the total circulation in *he sheet.

When (65), (66) and (67) are introduced into (60), it becomes

r O v( + 0. a+M(e)(a lIf(a) + ((0 )m a)
2 (70. ((+O N(O

+ -T I + C 2)a . 2(a + I)(;) f(a) + o (a (a (68)

Thore is no term on the left-hand side of (68) to balance the term
A.xA0 2 (m +1 1/in-ll

- U O f(a)

on the right, so this term must vanish. Blence, since A*1 0, f(a) - 0 .

By (63) this is only possible if cot w/=m 0 , and m >j is

m - 2 or 2/3 . (69)

The form of the condition makes it very likely that m - 2/(214 + 1),

N M 0, I, 2, ... is a complete set of possible values of m . However, in

subsection 4.1 the possibility that m < I was excluded in order to keep the

mapping conceptually simple, so the present argument cannot supply a complete set.

In fact the existence of the two possible values for a , corresponding by (9)

to n - 3/2 and 5/2 in (5), and the non-existence of intermediate values is
enough for practical purposes. It is suggested in section 7.3 that larger values

of n do not occur.

4.4 Local behaviour of velocity and pressure on the wall

We now consider the flow on the wall near the separation line, limiting

the discussion to the two values of m , given by (69), for which a consistent

solution seems to be possible. The velocity, v , normal to the separation line,

is given by a form of (3):

2 - V* U (70)

on BA and DA, where v* is the corresponding velocity component in the Z5 -plane

and is given by (48) and (49), with (51) for BA or (53) for DA.

On BA, € is real and negative. For a- 2/3, - -i , and (20)

gives

, , - -



.3J

Iz
2 " " + 2 143/21 + )

Ij +1 2k 2c +
kk

and so by (31),

I-.i 
(71)1,•r u adngai•

U

i, For a 29, C id and (24) gives

22 2 o

and so by (31),

21( I) (72)

By (51), for o real and negative,

nonce, by (48) and (49),

A~2 
- u 5/c'21 *' ** for' a-2/3

v* A4+ A1C + . f~ u

and so, by (70), (71) and (72)0 sine* AO*0 0

V 0 Aot *A',C --' I. c 3/2 1t (2) for a-2/3

I or
A; + + 'I (c) for u- p

036
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where A6 .0 0 end A' are undetermined constants. Using the relations above

to express C In terms of Z2 , and writing Z2 - y , we finally find

v - ~(IAlly-( )0( ))f m - 2/3

(73)

V ( A~~ 3(-Y +O0(y)) for a 2

Thus we see that, for m - 2 . as the flow approaches the separation line,

y - 0 , from upstream, the velocity couponent normal to the separation line falls,

and its gradient normal to the separation line, v. , becomes infinite there.

For m a 2/3 no such behaviour arises.

On the downstream side, DA, where w is positive, (53) with (42) gives:

MaU6 2m+
S=(2( + 1) (+0())

This dominate* the regular part of v* , given by (49). The modulus of the

mapping is given by (44) and so, by (70)

V ( + (0 + 0(60)) ;

or, uving (28) to relate 6 to Z2 - y , we have

"2'

v - 0,&ZI -(1 + 0(y')) . (74)

As would be expected from the proximity of the sheet. to the wall on the downstream

side, this expression resembles (64) for the tangential velocity on the sheet.

The velocity normal to the separation line on its downstream side is zero at the

line itself and directed away from the line in its immediate neighbourhood. How-

ever, it is so small that the streamlines on the surface cross the conical rays

towards the separation line, since v/U < y/x . Hence the velocity normal to the

separation ltie decreases along a surface streamline, despite the appearance of

(74). For m a 2/3 or 2 the velocity in the cross-flow plane is regular, to

the order of the present analysis.

We now examine how far the behaviour of the pressure gradient near the

separation line reflects that of the gradient of the velocity component normal to

the separation line. For conical flow, the pressure gradient along the separation

U-1
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line is zero. The gradient normal to the separation line, from the upstream to

Sthe downstream side, is Op/By . The pressure coefficient is given, in the usual

slender-body approximation, by

2u v2 + w2SC - - -+ ÷ontene.(5'• p 02

On the wall, a 0 where w- 0,

L~-I 2S- -pU -+ vWy )

U To relate Uy to vy * we recall that, for a conical field,

and so

x ry st~~ +, 0 0x + so ZU + yv ÷ V•

Differentiating this with respect to y

LA
v ZU + V zQ, Zw J~v *

y y y y

so we find, for - 0,

I u - •y
x~y yY

and the pressure gradient becomes

On the upstream side, where v is given by (73), it is clear that the pressure

gradient behaves in the sam way as the velocity gradient, ie there is an adverse

gradient which becomes infinitely large if a - 2 ; while if a - 2/3 the

gradient is not locally determined. On the downstream side, with v given by

(74), the pressure gradient becomes

(2mu+ 1) x
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S4 Since the pressure itself is a function of y/x in a conical flow, it is

given by

2 2fr~ 't1m(1 (76)
NP"-PPD 2 X)76

(2m ÷ I)

I. where is the pressure on the separation line. Hence, along a surface stream-
line, on which as we have seen y/x decreases as x and y increase, the

pressure falls and the gradient is favourable. With a small favourable pressure

gradient and a slowly diverging external flow, there is no tendency for the

boundary layer on the downstream side of the separation line to separate. This
supports the concept of the flow advanced in section 2 and sketched in Fig 1,

regardless of the value of m .

A marked difference in the behaviour of the limiting streamlines or skin-

friction lines between the upstream and downstream sides of the separation line

is frequently observed in surface oil-flow visualisations, particularly in

approximately conical external flows with highly-swept separation lines. The

limiting streamlines on the upstream side turn towards the direction of the

separation line very late, with high curvature and strong convergence, so that

their behaviour very close to the separation line is often masked by an
accumulation of oil. On the downstream side, the limiting streamlines are almost

straight and-parallel, with very little trend towards the separation line.

Examples are: primary separation on a slender circular cone at incidence, see

for instance Nebbeling and BanninkT; secondary separation beneath the primary

vortex on a slender delta wing, see for instance Lawford 8 ; and both primary and

secondary separations on an upswept rear fuselage, see Peake 9 . Pictures of

glancing interactions (plane shock normal to the surface and oblique to the10
stream) by Oskam, Vai and Bogdonoff show similar differences between the

upstream and downstream sides of a region of streamline coalescence, although the

authors do not regard the flow as separated.

Althougb the behaviour of the flow on the downstream side of the separation

line is, in the present treatment, little affected by the value of m , on the

upstream side the value of m has a marked effect. For m - 2, n - 3/2 , the

existence of an infinite adverse pressure gradient in the external flow makes it

probable, though not certain, that the boundary layer, whether laminar or turbu-

lent will separate before it reaches the postulated separation line. This

difficulty does not arise if m - 2/3, n = 5/2 . The implications of this for j

II modelling the complete flow are discussed briefly in subsection 7.5. t

S-i
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5 UXTENSION TO NON-CONICAL SHETS

We are still concerned with the behaviour of a sheet which leaves a plane

wall tangentially. in accordance with the conclusion of section 2, from a separa-

tion line which is highly wept, is inclined at a small angle X to the undis-

turbed stream. An in section 4 we take the wall to be the plane z - 0 , and

choose the axis of x to be tangential to the separation line at the point

considered, with x increasing downstream. We again study the configuration in

the cross-flow plane, x - conet , and use slender-body theory. Near the separa-

tion line the cross-section of the sheet is again of the form

Z- y , n(1 , (5)

but now u and n are allowed to depend on x in unspecified ways. It will be
assumed that the sheet is sufficiently smooth for v and n to be differentiable

twice with respect to x . The sequence of mappings used in subsection 4.1 still

applies and, by (9), the variation of p and n is equivalent to some equally

smooth variation in a and m . It is again assumed that m

The boundary conditions for this system of axes are obtained in the

Appendix, where the normal component of velocity on the section of the sheet in

* the cross-flow plane is given by (A-5) as

v U Tr sin .i v~~n e - y const :

By: (8), r - a sin (e/m) and so, with primes denoting derivatives,

I ar .at e 2S m- ' +' -ln +O( )0 (77)

r 8x a m

so that
iV

U n ( - m r sin/

SByycomparison with the first equation of subsection 4.2, we see that the normal

velocity is a multiple

m- ) (78)

of the conical distribution, plus a contribution
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vn= mU n r sin ,(79)

plus a contribution o2 higher order. Recalling that the procedure followed in

subsection 4.2 to obtain the tangential components from the normal components is

linear, we see that the tangential velocities in the non-conical problem can be

obtained as the sum of (78) times those found for conical flow, those correspond-

ing to (79) and a contribution of higher order, The lastfwill be neglectedl and

an analysis like that of subsection 4.2 will be pursued for the normal velocity A'

given by (79). The tangential velocities so found will be used, as in sub-

section 4.3, to check the consistency of the condition of pressure continuity.

The same geometrical relations as were used in subsection 4.2 enable (79)
to be rewritten as

Vn

m)a 0U ln(1a)(1 +O(cI/(8))

in place of (29). The geometrical relations (30) to (45) still apply, so we can

obtain from (80) a set of equations like (47) for the component, w* * of the

velocity normal to the real axis in the Z5-plane, near B and D. vis:

on BA W - v* - 0n
on iC •0• v m'aU i (m+I)/m /m(

o n B(C +*V: O(~ C; in •)n k 2M+I (81)

uM'aU 2m+2 2
on DC w* - - -M6 in 6(1 + 0(6

r. 'ntiw

on DA W*= v* M 0n

As before, we regard the analytic function v* - iw* as composed of a regular

part and a singular part, and obtain the singular behaviour from an analytic

function whose imaginary part behaves like w* , as given by (81).

Starting with the neighbourhood of B, we deal first with the possibility

that (m + 1)/m is integral. ie. in the admissible range, m . j or 1. Consider

the function:

(m+I)/m 2l )
(€) = - i 2

- - r.



For C real and negative, '10 a 0Q o Cra andpoivelfi nI -2*Henc In ra . pitnce

• I,(V* - i*)s ... C. !=)m(iwr In C:) 2

Adding a regular contribution, as given by (49)0 leads to

n m+
i I n(taU (ml)/)2Sv- iwv *- ~ A~---. 1  ~ (i-l ) *e .. (82)

Urn0 2wmk

near B, for m - or 1, where A is real and the term. omitted are of higher
order than the last term on the right.

Still near B, but with a >j and 1, let ia- (m + )/rm and consider

f(;) a ;-- •-I* w In C ,

where CU is defined as p a when C - pei * For C real and negative,

6--f and JlfI-O. For C real and positive, Jff• CU In C . Hence I

raU (M+i)/M -- /m
(v* - i.*)e cosec- c In C• cosec

II
Adding a regular contribution, as before, leads to

v* - iW* A 2m.. cosec C In C - w cosec +
mkI .e

feet%* (83)

near B, for m > and 1 1 ,where An is real and the terms omitted are of

higher order than the last term on the right.

Now, near D, consider the function

For w real and negative,L L058
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InB
- ln- - m

so that

ad (W ) (+) ik6 +( n 8- + 16 + o(82))
: and

•( =in a + I + 06In 8

For w real and positive, Olgkl - 0 . Hence, we have

(kkl 2
In 6(i + 0(6 1n )) for W < 0

I -

10 for W > 0

With k = 2m + I , this is the behaviour specified in (81), and so

t mau - 2m+Irw • YpM

(v* - iV*)S ((2 n )(-l ) In (84)

This dominates any regular contribution, so v* - iv* (v* - iw*)S

The next step is to obtain the tangential velocities on the sheet. Consider
first the upstream side BC, near B, where C is small and positive. (82) and

(83) show that the corresponding com~ponent in the Z5 -plane is

21 U (M+I)/M2•'aU(In C)if m-

�ik or !* -* A CU

n-o m'aU (m+.)/M
' k2m+1 os In C ix f an > •

si (k5~ sin )and #10

...... (85)

From this vt follows by (54). We can avoid the detailed argument, for which

the various values of m have to be considered separately, by observing that,
K4
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although the singular terms in (85) are larger than those in the previous expres-

L sions (50) to (52), they are still of highvr order than the singular terms which
appear in tdZ ,/dZ as given by (32), (34), (36) and (38). Consequently theL 52

singular terms in (85) do not appear in the expressions for vt , which are

identical with (55) to (58). Again, the dominant terms in v near B are the
same as they would be if the sheet were a streamline of the cross-flow.

On the downstream side DC, near D, on the other hand, the tangential com-

ponent is not the same as in the case of conical flow. The corresponding velocity

coaponent in the Z5-plane, vt , is -v* - -v* , as given by the real part of

V" (84) for w real and negative:

v• a(m 2m+ ()1n a (I + 0(62)).

t w(2m + Ow2m

Hence, by (43) and (54)

m'AU m 1 2v - TU n6 -+ a ()(n+ 0( 2)) c s

or, by (45),

m'Ua a m ) O(2/m)(vt ( 2 + I) n a0m ! ( + .~ (86)

This is of lower order than the corresponding result (59) for the conical sheet.

We can now write the tangential velocity components on the sheet near B

and near D for the complete non-conical problem by combining (78) times the !

expressions for conical flow with those just obtained for the special problem

defined by (79). Near B, both expressions are the same, so the result has still

the form found for the conical flow: 4
, mm

vtI8C " A61 * + (m+ 9(2.) f(a) +o(fIf(o))). (62)

where As 0 and A" are undetermined constants (not derivatives!) and-

afor m-j or 1
f(a) (63)

jot :or for m > and * .kIm
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Near D, by (86) and (64), we have

vtD in -. + a+ 0- (87)_JDC 2m + I m a a 2m÷ 1 (÷ n (87) I

The condition of continuity of pressure across the sheet is given in the

Appendix as

tt

IxSA le const a e const -

From (62) and (87) we can write

/ 'M
• ( Avt A0al C- +Mf f In; + (88)

where C1  is another undetermined constant and the omitted terms are of higher

order than the smallest term included. Integrating (88) along the sheet gives

2 ~~(M+ 0)/tdiaa
At - r m=() f (a)) -n f)+ (89)-

AO +(• C- ... (89)

where r is again the total circulation of the sheet, C2  is a constant related

to C1  and ttie omitted terms are of higher order. This equation expresses A#

in terms of a and a number of quantities, A', C2 , m and a , which are func-
tions of x . It is therefore helpful to write:

const const const ' const

Introducing this into (A-I1), we have

-~o v r a -2 (90)
-- const e const U48const

Now a- a(e/m)m(i + 0(82)) so

Da' m' a a ,' (m+2)/m
coit m--- oln- + - mrn + 0(÷ ) ;Lix __co.s_ m -a
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while, by (61) and (77),

3r ( 0021m)
as cos a in + -m 0 + Oa10 const )

Banco

cr o Cos CO - c nt - 0 (0 (m+2)im in a) . (91)

Hence, by (89) and (91), we can write (90) as

a ' ~(m+1)/M Um+a j ~ 02 aAmi<j

2•l +os itl ' Y+onstC Am() a

0 0(• 2 a ~ ) 2m(2m + 1) -a • ..
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- (v- + ln a) , (92)
tI

where the derivative is for constant a and the velocities are given by (87) and

(62). SNw y(2,(tIBC)2J

Now, by (62), (v contains a term t

12 (m + 1) ,, , (93)

If m > I and * I , the exponent of a in (93) is fractional and

f~a - ot(w/rm) . No other term in (92) involves at rcinlpwra

salas 1/rn , so (93) must be zero. Since AL*0, f(a) - cot (W/m) - 0,

and so m a 2/3 or 2. Hence m cannot take values which are close to or 1;

but m is continuous, so m can only take the values I or I if ml - 0.

If m = ,the term (93) is 3A 2(a/a in a . The only other terms in (92) of

order a2 in a have m' as a factor, so there is nothing to balance (93). The

term cannot vanish and so m - 4 is excluded. If m - I , (93) is

4A' 2 (/a) in a and there is no other term of this order in (92). Hence m - I0
is also excluded.

The only possible values for ,m are therefore 2/3 and 2, just as in the

case of the conical vortex sheet.

Just as the dominant terms in thetangential velocity on the upstream side

of the sheet are not affected by allowing the sheet to be non-conical, we can

see that the dominant terms in thevelocity and pressure on the wall upstream of
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the separation line are also unchanged. There are again adverse gradients of

"cross-flow velocity and of pressure, becoming infinite at the separation line, if
• " m - 2 ; but no locally determined gradient if a - 2/3 . On the wall on the

downstream side, a behaviour similar to that of the conical flow will be found

again, since the additional, lower-order term in the velocity field, (84),

vanishes for m' - 0 . The details will be more complicated, owing to the extra

r feedomavailable in non-conical flow, and will not be explored here.

6 EXTENSION TO CURVED WALLS IN NON-CONICAL FLOW

In this section the restriction that the wall should be plane will be

replaced by the weaker restriction that it should be smoothly curved. The argu-

ment is arranged so as to exploit the results obtained already and avoid repeti-

tion of the analysis.

The framework of slender-body theory is retained, so the curved wall is the

surface of a slender body at a small angle of incidence to the uniform stream.

The separation line on it is assumed to be smooth and highly swept, so that there

is a tangent to it at the point considered and this tangent is inclined at a small

angle to the uniform stream. We choose this tangent as the axis of x , with x

increasing downstream. The body is also supposed to be smooth at this point, so

it has a tangent plane, and we choose this as the plane zi -0 , with z

increasing away from the body. The y,-axis is chosen so that (x,y,,z 1 ) form a

right-handed system. Then, according to slender-body theory, the flow in the

plane x - condtant may be described in terms of analytic functions of

Z Yl + izs .

The argument is again a local one, so that the sheet and body surface can be

replaced by other curves which have the same local behaviour near the point con-

sidered. The cross-section of the smoothly-curved wall can be replaced locally
by a parabola:

z - -hy2, h -h(x) . (94)

Then the conformal mapping

zI - z2 - .hZ2 (95)

maps the region above the parabola (94) in the Zl-plane on to the upper half of

the Z2-Plane. We regard this as the region occupied by the fluid, so that the

body is locally convex if h > 0 . The Z and Z2-Planes are sketched in Fig 5.
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On the same basis, the sheet is replaced by the same curve in the Z2-Plan* thatS•i was used in sections 4 anu 5 to represent the sheet in that plans oei

4

S2 2 2 r a sin( 0 m02e (96) !

as in equation (8). The same sequence of transformations as before maps the

region exterior to the body and sheet on to the upper half of the Z -plane, but
we shall not need to make explicit use of these.

We must first check that a general choice of the parameters a and a *
(and of their variation with x) provides the desired degree of generality of
sheet shape in the cross-flow plane. If the distance of the sheet from the body,
measured parallel to the zl-axis, is denoted by f(yl) then by equations (94) to

(96):
2 2 2

f + i- ihZ2 + ihy

riee 2  .. 222 .2"rd - nr el hZ2 2 •
02 222 + ihy2

Hence, for small values of 02

coso + hr sin 20 -- a

and

8 rcoo 202+ 2 182
"f(yO) a r 2 sin 02 hr2  2 hy

This corresponds to the general form expressed by equation (5) if

m
m I - and a

just as in (9). The form given by (96) is therefore sufficiently general.

The first stage of the argument is to relate the normal velocity on the

sheet in the Zl-plane which is required to make it the section of a stream

surface of the three-dimensional flow to the normal velocity imposed on the

corresponding curve in the Z2-plane in the previous sections. At the same time

we treat the normal velocity on the wall. The stream surface boundary condition

1' •i • .•
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is expressed by equation (A-4). in which the paramter held constant in forming

the x-derivatives may be chosen at will.

On the wail y2  (which equals y, , by (95)) is held constant, so that
(A-4) becomes

v cr 1 coo. U dy
ax17 ax do,

from which

- v d 1  uldo1  Is 1  dy,v.2 70 I I ax 2 doU U dUI U do " ax

where vIl and v.2  are the normal velocities in the Z, and Z2  planes. Nov

02 Y2 yl on the wall and z, is given by (94). so

v.2 h,2
--h2 (97)

On the sheet 02 is held constant, so that (A-4) gives

Vn2  Uv. do •al d1 Y 1 do,
U U do2  ax 12 ix do 2

02 02

Inserting (96) into (95) gives

Y M r 2 cos 2 + hr' sin 202

(981
2jsI r 2 sin 2 -hr 2 cos 202 ,

from which 'I
r2 2

•Yi (Cos e2 + 2hr2 sin 2e2 + h r2 i e
ay1 ~ in )-.hrsin 202

- - csr1(99)
2zi r2 22

r- (sin e2 2hr 2 coo 202) -ix h'r coo 202
1 a:..1I ar -

++ l + ;•'i + +
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.1 Also, remembering that cos *2 - dr 2 /do 2  and sin *2 - rld02 /d@2 , and that
02 + *2 w Where i2 is the inclination of the section of the sheet to the

real axis, ye have

dy1
- coso 2 + 2hr 2 sin (a2 +2)

2, (100)

dsnI = sin 2 "2hr 2 cos ( 2 1.2)
2

Introducing (99) and (100) into the boundary condition above yieldw

n2 + 4- 22 az2(I + hr r sine.

- h'ra(cos (02 - #2) + 2hr2 sin *2) (101)

To find the dominant terms in (101), all the quantities need to be expressed in

terms of one, say 82 By (96) 1

20so that sr '2 r 2d8 2 /do 2  a sin (/

2 (102

and (

a(L (103)
24

ar2/ax 9 en 6) with the omitted suffix 2 restored and r 2  itself is• 2 .. 2 , 2/ mn
given by (96) Neglecting 2 ' m (a *,a) in comparison with unity, as in the

previous analysis (of. (29) and (80)), we can write (101) as

---- (= ) i( 1n + a' - am I + 4h + 4h2a2

+ h'a2 + 2ha()

+m
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From this we can pick out the dominant terms in (101):

sin *2 -h'oi2 . (104)

Which of these two dominates depends on the value of a * so both are retained,

using a small extension of the tilde notation.

The normal velocities specified by (97) and (104) are the su of two

contributions:

(a) v 0 on the wall and !- sin on the sheet, and

vn2  2 axv

"(b) - Y2  on the wall and - - -h'a on the sheet.

The linearity of the relation between the normal and tangential velocity distribu-

tions can be exploited, as it was in section 5, so that the complete tangential

velocities can be obtained as the sum of those corresponding to distributions (a)

and (b), Now distributeon (a) is precisely that treated in sections 4 and 5,

arising from the sheet on the plane wall. For distribution (b), we guess a

complex potential

Wb - ih'UZ /3(15

and verify that it gives the right behaviour on the wall and sheet. For the

wall, it is enough to differentiate Wb and set Z - Y2 , real:

v 2 v 2 {idWb ihU " _0 V " •:J"-- i : - hY2 Y2"
dZ I

This verifies the behaviour on the wall. For the contribution from Wb on the

sheet, it is convenient to write

dW dWb dZ2
-t2 42 - - -

2 dcZ 2 d• 2

Now U2/d e2 ,- e , by (102). Hence

2 i(3m+1)e 2 /m
- t vn2Ur (206)
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so that

h'0 + 0(a -h

and the behaviour on the sheet is verified, to tho usual approximation. Hence,

to leading order, the tangential velocities in the Z2 -Plane are those found in

the previous section, augmented by those derived from (105).

The final step is to consider the compatibility of these tangential

velocities with the condition of continuity of pressure across the sheet. This

condition can be written in the form (A-10). and it is again convenient to choose

the parameter n to be 02 * Then:

ax AV n Co * + , (107)

22 Vo ~ X I8

d 22

where the subscripts 'I' indicate quantities in the Zl-plane, In section 5 an

expression, (89), was found for At in terms of a . Sivt-2. ,ýhe extr4. velocityJ

(106) is continuous across the sheet, this expression still ho~ds, to the order

considered, with a replaced by a2 It is therefore convenient to consider,

as before, its derivative for constant a2 ,and write

ax 2 ax 3a dx 2  -

2 I ~~e2I 2 1 2 \d 2 6 'T8 x 28

The velocity componerts in the Zl and Z2-Planes are related by

/dc2ý [do21\

With these relations, (107) becomes:

+Al d 3•/yl dy, + Dz, dzI fdOa.• ao2 V .

:•+a-Ix t2 I ax a2 ax d2 2 1

Using equations (99) and (100) and the relation

2 22
I + 4hr 2 sin 2 + 4h 2r (109)
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which holds on the sheaet we find

(2 e22

Introducing (130) into (108) and recalling (91), we have
dyo d VtI2

"•os( 2 +2)2r2 Co2.2) 2h
2 r 2 r2

+ 0(o2 m'/ in 0)) . ((110)

The additional tangential component of velocity deriving from is given by
Irc(106), o 0 that

ax =vt - 22  sin and Av2 2  -2 c

where v,. and Av•* are just as they were in section 5. Using (103) and (109)

•again, we find the condition of pressure continuity becomes

•--l - vt + 4hr 2 sin 82 + 4h2)( • + h 2 sin m 9-' 2-0S22

÷ h', 2 sin --- 2"I" 2hhr ose•2 +m O4 ,0(%om+2)/mIn o)) . (112)

The corresponding equanctol inpseion 5 is (92), htdich can be written

- Avt - -. + In in . (113)
axx Uo2

22

Si It ~was shown that this contains an unbalanced term of order oI1/rn fm

and rn#1 or pI/r n oa if m-= orn. Recalling that Avt ifd V are

both of order unity, we can see that the orders of the extra terms which appear .
in (112) and not in (113) are too high for them to balance this crucial term.

It must therefore vanish, and the argument in section 5 which follows
equation (92) again holds, showing that the only possible values of m in therange m 1o am < are still 2/3 and 2.



The extra freedom afforded by the smoothly curved wall is not therefore

sufficient to allow a different behaviour of the sheet close to the separation

line. Further, since the additional velocity field defined by (105) and (95) is

k regular, the singularity in the pressure gradient on the wall found previously

on the upstream side of the separation line for m - 2 (n * 3/2) wili still

arise.

r The shape of the sheet is described most simply in terms of its distance

f(y,) from the wall, y, being the same, to the first approximation, as the

distance along the wall. We have

i]
f (yd) 8L a~)n

wtere n- I + 1/m is 3/2 for m 2 and 5/2 for m = 2/3 . In terms of the

Cartesian coordinates y, and z, measured parallel and perpendicular to the
tangent to the body cross-section (see Fig 5), the shape is given by equations
(95) and (96) asy-/ ,

3/2

z(~ 2a.) for m-

5/2

+ hya form 2/3.

7 RESULTS AND CONJECTURES

7.1 Main results

It has been shown that, under the assumptions of slender-body theory, the
shape of a vortex sheet which contains circulation being shed from a highly-swept

separation line on a smoothly curved wall in steady flow is restricted in form.

If, in the vicinity of theseparation line, the distance of the sheet from the

wall increases like yn , where y is the distance from the separation line,
then the only possible values of n not exceeding 3 are 3/2 and 5/2. If

n - 3/2 , there is an adverse pressure gradienton the wall upstream of the

separation line which becomes infinite at the separation line itself. If

n - 5/2 , the pressure gradient at the separation line remains finite. In both

cases the strength of the vortex sheet (its circulation per unit length) varies

linearly with the arc length along the sheet, close to the separation line.

I~t ________ _ I
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For a conical sheet on a plane wall, the inviscid flow on the downstream

side of the separation line is favourable to the growth of an attached boundary

layer, so that it is only the boundary layer on the upstream side which separates.

These results are expected to be helpful in numerical treatments of vortex

sheet models of separated flow and in understanding the mechanics of flow

separation in three dimensions.

7.2 Equivalent results for unsteady plane flow

There is an exact analogy between slender-body theory for steady flow and

the theory of the time-dependent, two-dimensional flow of an inviscid incompress-

ible fluid. The time, t , in the plane flowis related to the downstream dis-

tance, x , in the steady three-dimensional flow of undisturbed speed U by

t =- (114)
U

The plane flow takes place in the cross-flow plane. Variations in the cross-

section of the slender body correspond to changes with time in the shape of the

body in the plane flow and variations in its inclination to the undisturbed

stream correspond to changes in the relative velocity between the body and the

fluid in the plane flow. The term 30/3t which arises in the time-dependent

form of Bernoulli's equation corresponds to the contribution from the streamwise

perturbation velocity u - Wa/3x to the slender body form (75) of the three-

dimensional'Bernoulli relation. It is straightforward to verify that the

boundary conditions on the vortex sheets correspond through equation (114).

The results of the present work therefore hold also for the behaviour of a

vortex sheet representing an 'open' type of separated flow in plane, incompress-

ible time-dependent flow, whether the time variations are in the imposed

velocity, the body shape or the position of the separation point. In particular,

the same two exponents 3/2 and 5/2 are the only ones (not greater than 3) which

can occur in flows of this kind, and the smaller is inevitably associated with

an infinite adverse pressure gradient.

7.3 Relation to previous results for plane flow

A considerable amount of work, dating back to Helmholtz and Kirchhoff,

has been done on steady two-dimensional flows past a body from which spring a

pair of constant-pressure streamlines. Since, in this context, constant pressure

implies constant speed, hodograph methods can be used and, with their help, com-

plete flowfields can be described analytically. A sumnary account, with
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references to the original papers, is given by Thwaites!. The constant-pressure

streamlines leave the body surface tangentially and, in some senset enclose a

finite or infinite region downstream of the body. The fluid inside this region

must be at rest at the separation point itself, since it lies between the

constant-pressure streamline and the downstream side of the body, which meet at

a cusp. Since the static pressure is continuous, the constant pressure on the

separation streamlines must be the stagnation or total pressure in the downstream

region. The total pressure is therefore different in the downstream region from

its value in the main flow and the separated flow cannot be of the 'open' type

discussed in the present Report. There are two conventional interpretations of

the downstream region: either the fluid there is the same as the mainstream

fluid and it is at rest (a deadwater region), or, more plausibly, it is occupied

by a fluid whose density is negligible compared to that of the mainstream fluid

(a cavity in a liquid, filled by its vapour or another gas). Neither of these

interpretations seems to have any aerodynamic significance in itself; but, since

the constant-pressure streamlines are particular cases of vortex sheets springing

from a smooth body, their behaviour near the separation point invites comparison

with the present results.

In the vicinity of the separation point, equations (168) and (169) of

Ref I I describe the behaviour of the curvature, K , of the streamline and the

upstream pressure gradient on the wall. In condensed form:

K T(2 - + 0(0 -

2 2
-C 2T(O 2  0)' 0(02 -

where T is a constant, s is the distance along the body surface in the direc-

tion of the upstream flow and 0 is the velocity potential on the sheet or body,

taking the value 02 at the separation point. We can see that if T > 0 the

curvature and pressure gradient behave in the same way as the present results

predict for n a 3/2 . If T < 0 , the solution is meaningless, as the constant-

pressure streamline lies initially within the body. If T - 0 , both the curva-

ture and pressure gradient vanish. The present results are that the curvature

and pressure gradient are finite for n - 5/2 ; the curvature is that of the body

and the pressure gradient is not locally determined. Hence the previous results

for the neighbourhood of the separation point reduce almost, but not quite, to a

special case of the present analysis. The difference concerns the curvature of

the sheet in the case for which it is finite: the constant-pressure streamline
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has zero curvature, the 'open' type of vortex sheet has the same curvature as the

body. It is plausible that such a difference should arise, since the flow

between the sheet and the body, on the downstream side of the separation point,

does not enter the previous analysis.

The previous results also suggest the role played by the solutions for

n -3/2 and 5/2. To see this, we confine our attention to the so-called

Kirchhoff flow past a circular cylinder, the flow for which the pressure on the

constant-pressure streamline is the same as the pressure in the undisturbed

stream, as illustrated in Fig IV.14 of Ref II. There is a one-parameter family

of these flows, corresponding to a variation in the position of the separation

points on the cylinder. If the position of separation is specified by its

angular displacement 8 from the front stagnation point, then for 0> e - 56

it is found that T > 0 . As 6 falls towards 6S , T falls, and vanishes when

t -aS . Separation which occurs with T - 0 is called 'smooth'. Suppose, now,
that we find a vortex sheet vepresentation of the separated flow past a slender

cone (Gf general cross-section) with an assumed inviscid separation line along

a generator chosen at random; then it seems likely that the behaviour near the

separation line will correspond to n - 3/2 . The behaviour corresponding to

n - 5/2 is not likely to arise for more than a finite number of positions of the

separation line, though such positions may well be significant in relation to the

real flow, as discussed in subsection 7.5. Vortex sheets which lie even closer

to the surface, which might arise from values of n greater than 3, seem

unlikely to occur at all.

7.4 Range of validity of present results

The detailed results of the present work have been obtained within the

assumptions of slender-body theory. It is relevant to ask whether they hold more
widely.

On the one hand, the proof in section 2 that a vortex sheet representing

separation must be tangential to the wall depends crucially on the equality of

the entropy on the two sides of the sheet. This clearly sets a limit to the

extent to which the later results about the flow near the separation line can be

generalized. On the other hand, since the arguments used in obtaining these

results are local ones, it seems unlikely that the global limitations required

for the application of slender-body theory are actually necessary. This impres-

sion is confirmed by the applicability of the present results to plane flow, a

two-dimensional body being completely 'non-slender'. Further, the applicability
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of the present results to unsteady plane flow suggests that the initial limita-

tion to steady flow was unnecessary.

It seems that it might well be possible to extend the present results to

unsteady incompressible flow past general bodies, and, perhaps, to compressible

flows in small-disturbance approximations in which entropy changes are negligible.

7.5 Prediction of separation line

Studies of inviscid flow, like the present, are meant to lead to useful

models of real flows. As suggested in section 1, vortex sheet models of flows

separating at highly-swept separation lines are expected to be adequate if the

position of the separation line can be determined. In Ref 3 it was suggested

that this should be attacked by an iteration between a boundary-layer calculation

which uses a given external velocity field to predict the location of separation

and a calculation of an inviscid model of the separated flow which uses a given

separation line to predict the external field. For turbulent boundary layers

this still appears to be the way to proceed, but for laminar flows there may be

an alternative procedure.

The resemblance between the present results for separation from highly-

swept separation lines and earlier results for the constant-pressure streamline

model of two-dimensional separation suggests that an analogue of Sychev's work 12

for plane flows may exist for highly-swept separation lines. Sychev seeks a

local solution, valid near the separation point,.to the Navier-Stokes equations

for the steady flow of an incompressible, viscous fluid past a smooth body in

two dimensions. He finds the structure of such a solution in the form of an

asymptotic expansion in fractional powers of the inverse of the Reynolds number.

As the Reynolds number tends to infinity, the solution tends towards an inviscid

flow with a constant-pressure streamline which separates smoothly from the wall.

For finite Reynolds number, the point of separation is further downstream, by a

distance proportional to Re -/16 The constant of proportionality remains to

be determined by a numerical calculation, which is required, in principle, to

confirm that a solution with this structure actually exists.

If such an analogue of Sychev's work does exist, and preliminary work by

N. Riley at the University of East Anglia indicates that it may do so for conical

external flows, then the outcome of the iteration proposed above is predictable:

since laminar boundary layer theory represents the limit of infinite Reynolds

number, it is smooth separation which will emerge. This would be the best that

could be achieved with a boundary-layer calculation and it could be achieved

without it, by examining the behaviour of the inviscid model. Furthermore, if

U 058



54

the numerical solution to the analogue of Sychev's problem were known, the lead-

ing term (of order Re- 1/16) in the correction to this infinite Reynolds number

solution coilld be found, and the inviscid model corresponding to this corrected

position of separation could be calculated for large, but finite, Reynolds

numbers.

This is all speculative at present, but already has a bearing on the con-

struction of an inviscid wodel of the flow separating from highly-swept separa-

tion lines on smooth surfaces. If such a model is intended eventually to form

part of a method which predicts the position of the separation line,

(a) it must represent the shed vorticity near the separation line in a

continuous form, ie a vortex sheet representation is the simplest likely
to be useful,

(b) the curvature of the sheet must be allowed to tend to infinity like the

inverse square root of the distance from the separation line, and

(c) the coefficient of this singularity should be determined explicitly by the

calculation procedure.

Finally, since the constant-pressure streamline model has figured so

prominently in this section, its role should perhaps be clarified. The resem-

blances between the mathematical properties of the vortex sheet model of open

separation (whether in steady flow from a highly-swept separation line or in

unsteady two-dimensional flow) and the constant-pressure streamline model of

steady two-dimensional separated or cavity flow have been noted and partially

exploited. It is not suggested that the constant-pressure streamline model has

the sam relevance to closed separation in t•o-dimensional steady flow as the

vortex sheet model is believed to have to open separation. Indeed, a more

satisfactory approach to two-dimansional separation would be to recognize its

essentially unsteady character and treat it as a time-dependent problem involving

vortex sheets.
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Appendix

BOUNDARY CONDITIONS

In this Appendix the boundary conditions on the body and on the steady

vortex sheet are expressed in terms of quantities in a cross-flow plane, under

the usual assumption of small disturbances. The expressions obtained are equiva-

t lent to those given by Smith4 and Clarke 5 ; but their derivation is a little more

general, in that the axis system is no longer required to be exactly aligned with

the undisturbed stream, and a little simpler, in that vector algebra is avoided.

V The boundary conditions are that the body and the vortex sheet are stream

surfaces of the three-dimensional flow and that the pressure is continuous across

the vortex sheet. Since the sheet is assumed to be enbedded in an irrotational

flow, the continuity of pressure implies the continuity of speed across it.

Consider a right-handed system of rectangular Cartesian axes with Ox

inclined at o small angle X to the undisturbed stream of speed U . Denote the

components of the velocity parallel to the axes Ox, Oy and Oz by

U cos X + u, v and w , so that u, v and w are small compared with U by

the assumptions of small disturbances and small inclination. Suppose the vortex

sheet or body surface, E , is defined by F(x,y,z) - 0 and also, in parametric

form, by y - f(xn), z - g(x,n) , where n is a paraneLei wtLi.h varia; al=n-

the curve 1W in which the cross-flow plane x = constant meets Z . Then

F(x, f(x, n) g(x,rn)) 0

where the identity sign means that equality holds for all values of x and n

in the ranges which define E . Hence the identity can be differentiated with

respect to x and n to give:

Fx + Fyfx + Fzgx 0 (A-I)

Fyfn + Fg 1 0 . (A-2)

Since E is a stream surface of the three-dimensional flow:

(U coo X + u)Fx + vF + W 0

o s s a

or, since X is small and u is small compared with U
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UF vFy +wF - 0 . (A-3)
x y z

The three equations (A-I) to (A-3) are linear and homogeneous in Fxj F and

F , and they have a non-trivial solution, so the determinant of the coefficientsz
vanishes. Expanding the determinant gives:

wf - vg, - U(fnsx- gnfx)

This provides an equation for the component vn of the velocity in the cross-

flow plane, normal to r . If the sense of the normal is given by a positive

(anticlockwise) rotation from the direction of increasing ni

vn w coo -v sin* (wf~ -Vg)/01 + g2)

where * is the inclination of the tangent, in the sense of n incressing, to

the axis Oy , and where the positive value of the radical is understood. Hence

vn f g g f
U 2f• 2•

(f + g

= .- cos o - sin* . (A-4)

The parasmeter n does not appear explicitly in (A-4), but the same parameter

must be held constant in the two partial derivatives. Particular cases of (A-4)

are

n az r ksnaa M X cost - - sin isn (A-5)
ax ax axe

where (r,e) are polar coordinates and * is the inclination of the tangent to

the radius vector, as in Fig 3.

It is sometimes conve-aient to work with the stream function, I , in the

cross-flow plane. If the vwlocity potential 0 is the real part of the complex

potential W(Z) , where Z = y + iz , then T is the imaginary part of W

Hence, on

an n

•• i, ;w i•
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.Hence, by (A-4):

- J/Y az(A6UJ sin - cos do U dz - dy) (A-6)

Equations (A-4) to (A-6) are equivalent expressions of the condition that Z is

a stream surface.

The second boundary condition applying when E is a vortex sheet is that
the fluid speed is continuous across E , ie

A((Ucos X +u) 2 +v 2 +w 2 ) - 0 ,

where A is a difference operator across E . To be definite, A is chosen so

that AA -A 1 - A2 ,where the suffix I denotes the side of E towards which

the normal points and 2 the opposite side. Because X and the disturbances are

small, this condition reduces to

' 2 v2
2UAu +A(v + w) 0 (A-7)

Now, if v is the component of velocity in the cross-flow plane, tangential to

, in the sense of n increasing,

"2 2 2 2
V +~ - V~ +t n

while, to the order of accuracy of this analysis, (A-4) shows that vn is con-

tinuous across I . Hence (A-7) reduces to

S UAu + V AVt - 0 ,(A-8)
• tm

where vt is the mean value of vt across Z Now, if the velocity potential
M

in the fluid on the two sides of E is 0l(x,y,z) and t 2 (x,y,z) ,

U 4 - 1 -2 AO - axy,z

On the other hand, the jump in 0 across Z is

O 41(X f(xr), g(xn)) 2x, f(x'), g(x58))

7058
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therefore 0x + x ' +xg

Au + fAv + gw . (A-9)

Since v is continuous across Z ,
n

SAV- AVt coo a nd AV - AVt sin ,

so that, by (A-9),

•. AU --- AVt(fx Cos + $ sin J)
K,

Hence. the condition of continuity of pressure, (A-8), becomes

ax" " vtW o - (A-aO)

An in (A-5), the parameter n does not appear explicitly in the boundary

Scondition, but the partial derivativer on both sides of (A-10) must be calculated

for fixed values of the sa parameter. If, for example, the polar angle 0 is
S~fixed, (A-1I0) becomes

3 rx Io Atax coso•- . (A-Il)

For conical flow, with s - Kx , this reduces to the faniliar form

OU,÷, AO - Avt Cos •

Similarly, Clark's equatious, (A-18) and (A-19) of Ref 5, are obtained from

(A-5) and (A-10) when the sheet is defined in terms of his parameters.
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LIST OF SYMBOLS

a diameter of circular arc in Z3-plane

A, A, ... undetermined real constants

b, c, d coordinates of points B, C, D in Zs-plana

B arbitary positive constant

.Cp pressure coefficient, (p - p.)/ipU2

curve in which E meets the cross-flow plane
F mapping function

h parameter describing local shape of wall, see (94)

ki, k2 , k3  consta-nts defined by (14a)

Sm - 1/(n - 1), exponent, see (6)

U exponent defining order of contact, see (5); also normal to

Sp pressure

q source strength
•:r polar distance in cross-flow plane

i/-•4t time

'U speed of undisturbed stream

Up u, v, disturbance velocity components parallel to ox, y, z

S, vs tnormal and tangential components of cross-flow velocity

. mean value of vt across vortex sheet

W complex potential

Sx, yo Z right-handed, rectangular Cartesian axes

Z y + iz, cross-flow plane

.Z* final transformed plane

r total circulation of sheet

2 •small positive quantity, see (42)
•, • difference operator across vortex sheet

small complex quantity, see (13)

in parameter on q in Appendix; dummy variable on real axis

.e polar angle in cross-flow plane
r I inclination of x-axis to undisturbed stream

f • •dummy variable on real axis

I 'P density; Wi

a arc length on W~

z surface of body or vortex sheet

inclination of tangent to • to radius vector

velocity potential
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LIST OF SYMBOLS (concluded)

* inclination of tangent to . to Oy

Y stream function in cross-flow plane

w small complex quantity, see (25)

affix * denotes a quantity in the transformd plane Z* or Z
suffixes 1, 2, 3, 4, 5 denote quantities in successive transformed planes

suffixes S, R denote singular and regular contributions
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